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Coexistence curve of perfluoromethylcyclohexane-isopropyl alcohol
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The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol

was determined by precisely measuring the refractive index both above and below its upper critical
consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced

temperatures, 10-5<t<2.5×10 -l, to determine the location of the critical "point: critical

temperature=89.901 °C, and critical comp0sition=62.2% by volume perfluoromethylcyclohexane.

These data were analyzed to determine the critical exponent ,8 close to the critical point, the
amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to

be as symmetric as any compositionlike variable. Correction to scaling is investigated as wetl as the

need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of
the effective exponent ,8, which allows an estimation of the temperature regime free of crossover

effects. © 1996 American Institute of Physics. [S0021-9606(96)51626-0]

I. INTRODUCTION

The substantial recent interest in critical phenomena in a

multitude of physical systems has been built upon concepts

of scaling and universality which developed from studying
second-order phase transitions in fluid systems. A framework

in renormalization group theory has been used by many oth-
ers to predict relationships among exponents, the values ex-

ponents should have when they belong to different univer-

sality classes, and relationships among the amplitudes of

thermodynamic quantities. Although renormalization group

theory does not predict the location of the critical point, all

systems in a given universality class behave similarly once
they are close to their own critical points.

The predictions for the exponents have been well
verified I close to the critical point in liquid-gas systems and

close to the critical consolute points in binary fluid mixtures,

both of which belong to the same universality class (three-

dimensional Ising model). Two-scale-factor universality pre-
dicts that two independent amplitudes of leading anomalies
(e.g., correlation length and compressibility) can be used to

determine amplitudes for other quantities near the critical

point. Thus, it is possible to measure thermodynamic quan-

tities in a system to obtain independent amplitudes, and then
accurately predict most of the thermodynamic behavior near

the critical point for that system. Several reviews discuss L2

the present status of experiments and theory in these simple
systems. Such systems provide essential models for under-

standing the behavior near critical points of much more com-

plicated systems, such as polymer-solvent phase separation, 3
polymer-polymer blends, 4 ionic systems, 5 miceiles, 6 etc.

In order to determine critical amplitudes and exponents,
it is essential to be near the critical point. The coexistence

curve provides the location of the critical point and is the
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first experiment that must be conducted on a system. The

shape of the coexistence curve has traditionally provided in-
formation on the critical exponent ,8 and amplitude B. This

arises from simple sea!ing, where the difference in order pa-
rameter x between the upper (u) and lower (l) phases goes

as a simple power law in reduced temperature
t=--(Tc-T)/T c when very close to the critical temperature
T,. :

Ax=--x,-xt=Bt _ (simple scaling). (1)

Further from the critical point, additional, "correction-to-
scaling" or Wegner, 1"2terms are needed:

Ax=Bt_[ 1+Bit at +B2 t2AI +" "], (2)

where the amplitudes B, B I, etc., are system dependent, but
the exponent Aj is predicted 1'2 to be a universal 0.51. The

critical exponent, ,8, is predicted L2 to be 0.327+0.002. Singh

and Pitzer 7 have looked at a number of binary fluid mixtures

and concluded that, experimentally, upper consolute points
have correction-to-scaling amplitudes Bl=0, while B 2 is

negative and system dependent.
The theory describing a system very far from the critical

point is less certain. Recent work 8 has focused on the global

region containing a critical point and the substantial influ-
ence of the critical point on the observed behavior. Cross-

over theories have been developed 8 for liquid-gas critical

points that allow two distinct critical points: one describes
the near-critical, Ising-like behavior, which crosses over to

the mean-field critical point when the system is far from the

Ising critical point. Corresponding theories for binary fluid

mixtures near their critical consolute point are under
development. 9 Testing these theories requires precise data

over a broad range of temperatures in a variety of systems,

which we have continued to acquire with the system reported
here.

In liquid-gas systems, the order parameter is the

density, j'2 for binary fluid mixtures the proper order param-

eter is still uncertain, although many favor volume fraction
since this gives j'2'5 a more symmetric Ising-like coexistence
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curve. The symmetry of the coexistence curve in a given

composition variable depends on the properties of the pure

components. It has been observed 5 that dissimilar compo-
nents tend to have skewed coexistence curves in any of the
traditional composition variables of volume fraction, mass
fraction, or mole fraction. While various schemes 3'5A°,ll have

been developed to find a composition variable that symme-

trizes the coexistence curve, none have been wholly success-
ful.

The experimental study of binary liquid mixtures near
their critical consolute point has several advantages over

liquid-gas systems. A binary liquid mixture has a critical

point at atmospheric pressure, can have a critical temperature
close to room temperature, has minimal gravity effects, and

typically obeys simple scaling for relatively large reduced
temperatures. 1"2 Moreover, more complex systems that in-

volve mixtures can be modeled in the simpler binary liquid
systems by choosing components appropriately.

While the coexistence curve of a binary liquid mixture
can be measured by several techniques, 2 the one utilized in

this experiment is to measure the refractive index of a sealed

sample at various temperatures, 12,t3 which provides a mea-

sure of the composition of each phase. The refractive index
is a precise, nonintrusive probe which can measure the prop-

erties of the coexisting phases for a single sample of fixed

composition. Investigating one sample avoids the problem of

preparing multiple samples without introducing differing

amounts of impurities, which affect the critical temperature
and critical composition. 14

The volume fraction of component 1 in a phase can be
calculated from the refractive index of that phase using two

assumptions. First, that the refractive index itself does not
have a significant anomaly close to a critical point; measure-

ments and predictions 15 show any such anomaly to be
smaller than the resolution in this experiment. Second, that

the Lorentz-Lorenz relation holds for binary liquid mixtures.
Direct experimental tests 13"16'17of the Lorentz-Lorenz rela-

tion in near-critical binary fluid mixtures have verified the

Lorentz-Lorenz relation within experimental error (0.5%).

Until a proper order parameter is established for binary liq-

uid mixtures, the choice of composition variable is still
somewhat arbitrary L2 so that other "composition" variables

can also be used in analyzing our data.

This experiment uses refractive index techniques to in-

vestigate the coexistence curve of the binary fluid mixture
perfluoromethylcyclohexane-isopropyl alcohol (PFMC-IPA).

This coexistence curve has not been precisely measured 1s

over an extended temperature region before, yet provides an

intriguing system because of the high critical temperature
and of the mismatch of the components (PFMC-IPA) has a

density ratio of 2.27 and molecular weight (Mw) ratio of
5.82), which results in a skewed coexistence curve over an

extended temperature region. Thus, issues of crossover and

coexistence curve symmetry can be investigated.

II. EXPERIMENT

The fluids were spectral grade isopropyl alcohol

(Fisher's Spectranalyzed), used without further purification,

and perfluoromethylcyclohexane (PCR, >97% pure), which
was distilled in a spinning band still with a reflux ratio of

20:1 to achieve a purity greater than 99.9%, as determined

by a gas chromatograph. The fluids were transferred in a

dry box under a nitrogen atmosphere to prevent further

water contamination. The refractive index and density of

the pure components were measured independently. The re-

fractive index was determined using the equipment de-
scribed below at a wavelength of 632.8 nm with the

values for pure PFMC fitted by n 1= 1.2877

-3.977 × 10-aT - 6.64X 10-TT 2, while values for pure IPA

were fitted by n2= 1.3827-3.861× 10-4T-8.47× 10-TT 2,

where T is in °C. These are consistent with the published Is
values at 90 °C. The densities (g/cm 3) were measured in a

temperature controlled (_ l mK), vibrating tube densimeter 19

and found to be described by p1=1.8490-2.460

×10-3T-3.79×10-6T 2 for PFMC and p2=0.80034
-7.035× 10-4T-2.55× 10-6T 2 for IPA.

One composition of the fluid mixture was prepared and

measured: 53.1% by volume PFMC, which was reported by
Schmidt 18 as the critical composition. The mixture was

sealed in a stainless steel, prism-shaped cell 12 that has a vol-
ume of 7.1 cm 3, including a 0.6 cm 3 nitrogen bubble to main-

tain the pressure close to atmospheric. The fluids were sealed
with indium wire o-rings for the windows and a Teflon TM

plug on the fill-hole, sealing screw. The cell temperature was

controlled with an ac Wheatstone bridge using a seven digit
ratio transformer (General Radio 1493A) and lock-in ampli-
fier (EG&G 128A). A temperature controlled thermostat sur-

rounded the cell as before, 12and included an outer stage with

attached copper tubing through which a circulating
antifreeze-water mixture could flow from a water bath

(Lauda RM-6). The cell temperature was sensed by a Ther-
mometrics ultrastable thermistor which was calibrated to

0.01 K. Temperature resolution was _+0.2 mK with control
of ---0.5 mK over 24 h.

The bulk refractive index was determined from measure-

ments of the minimum deviated angle of 632.8 nm He-Ne

laser light bending through each phase of the prism-shaped
sample of fluid. The undeviated angle and the prism angle

were also measured. Angles were read with a Gaertner spec-
trometer to a precision of 20 arcsec, providing a resolution in

refractive index of _+0.00012. The procedure for taking a
data point and calculating the refractive index is the same as

reported previously. 12 After temperature control was

achieved for each data point, the thermostat was shaken to

mix the fluids across the meniscus and to prevent gravita-
tional stratification 2 from occurring. The fluids showed wet-
ting behavior 2° at temperatures below 50 °C but not at tem-

peratures closer to critical. The wetting behavior consisted of
the lower phase wetting the inside of the container and sur-

rounding the upper phase with a thin (and for this experi-

ment, unmeasurable) film that caused a tiny pendent droplet

to form at the interface between the upper phase and the
nitrogen bubble. Previous publications 2° have measured the

wetting phenomena in this system.

A weighted, nonlinear, least-squares routine was used to

fit the equations to the data by finding the best set of param-
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eters that minimizes 21 the reduced chi-square x2/N. Using

our own functions in the commercial program IGOR PRO, 22

we could allow some parameters to be free and force others

to take on certain values as will be described below. This

program allows each data point to be weighted according to

the error in the dependent variable and determines errors on

the parameters that are related to the diagonal elements of the

typical error matrix. 21 While this is adequate for equations

whose parameters enter linearly, errors of nonlinear param-

eters should be determined by error ellipses. 23 In tests on a

subset of this data against a program 24 that correctly deter-

mines the errors, we found that the parameter values were

consistent, and that the IGOR errors exceeded the appropriate,

one standard deviation (10") errors. In the following, our

quoted parameter errors are those given by the program and

should be considered the l cr error.

III. RESULTS

Data were taken in two runs over a several month pe-

riod, and the data spanned over five decades in reduced tem-

perature 1 × 10-5<( T C- T)/T¢<2.6X lO-i. The critical tem-

perature was observed visually for each run to be 89.901

_+0.0005 °C. The raw refractive index data were

reproducible and are listed in Table I and shown in Fig. l

without distinction. The coexistence curve appears quite

skewed in Fig. l because the two phases separate into essen-

tially the pure components within the region studied. Thus,

the sides of the coexistence curve, as represented by the re-

fractive index, asymptotically approach the pure component

refractive index temperature dependence as is shown in Fig.

1. The average of the upper and lower phase refractive indi-

ces represents the "diameter" of the coexistence curve. The

diameter can be extrapolated to the critical temperature and

compared to the one-phase values to give a correction to the

critical composition; these data show no measurable differ-

ence between the one-phase and diameter refractive index at

the critical point. This means that the composition of 53.1%

by volume PFMC, which is prepared at room temperature,

results in the critical composition when the system is at the

critical temperature. Our measured refractive index values

are also consistent with Schmidt's measurement of the re-

fractive index, which was reported 18 as an equation and is

compared to our data in the inset of Fig. 1.

Using the densities (pl and Pz) and the refractive indices

reported above for the pure components, the effectively con-

stant polarizabilities a1=0.0233 and a2=0.0700 cm3/g can

be determined and used to calculate the volume fraction ¢1
from the Lorentz-Lorenz relation. 16

n2-1 47r

n-rT_ = T (o_1014'_+ a2024'2)

4zr

- 3 (azP2+(aiPl-°t2P2)¢l)' (3)

where 1 and 2 refer to PFMC and IPA, respectively. The

resulting values are listed in Table I and shown in Fig. 2.

Two trends are immediately apparent: (1) the mixture phase

TABLE I. The coexistence curve data for the critical concentration

of perfluoromethylcyclohexane-isopropyl alcohol in both the two- and

one-phase regions. The measured data were of the refractive index n,
while the volume fraction & is calculated using the Lorentz-Lorenz relation

as described in the text. The critical temperature was observed to be
89.901 °C.

2 phase

n n ¢ ¢

Temperature lower phase upper phase lower phase upper phase

89.9009 1.2808 1.2823 0.6312 0.6152

89.9004 1.2806 1.2826 0.6334 0.6120

89.9000 1.2797 1.2833 0.6430 0.6046
89.8994 1.2802 1.2829 0.6376 0.6088

89.8984 1.2797 1.2836 0.6430 0.6014

89.8978 1.2797 1.2838 0.6430 0.5993

89.8972 1.2795 1.2840 0.6451 0.5972

89. 8966 1.2793 1.2841 0.6472 0.596 I
89.8962 1.2796 1.2841 0.6440 0.5961

89.8962 1.2792 1.2844 0.6483 0.5929

89.8939 1.2793 1.2844 0.6473 0.5929
89.8939 1.2789 1.2842 0.6515 0.5950 _ .r

89.8929 1.2791 1.2847 0.6494 0.5897 '_
89.8919 1.2789 1.2847 0.6515 0.5897

89.8909 1.2785 1.2845 0.6558 0.5919

89.8907 1.2788 1.2851 0.6526 0.5855
89.8896 1.2786 1.2853 0.6548 0.5834

89.8894 1.2783 1.2853 0.6580 0.5834

89.8888 1.2783 1.2849 0.6580 0.5876

89.8876 1.2786 1.2849 0.6548 0.5876
89.8870 1.2787 1.2847 0.6537 0.5898

89.8860 1.2785 1.2849 0.6558 0.5876

89.8850 1.2785 1.2847 0.6558 0.5898
89.8841 1.2781 1.2857 0.6601 0.5791

89.8752 1.2776 1.2862 0.6655 0.5739

89.8640 1.2771 1.2862 0.6709 0.5739

89.8512 1.2762 1,2876 0.6806 0.5591
89.8251 1.2748 1.2893 0.6957 0.5413

89,8172 1.2752 1.2882 0.6915 0.5530

89.8105 1.2737 1.2897 0.7076 0,5371

89.6839 1.2719 1.2910 0.7276 0.5240

89.6735 1.2723 1.2918 0.7234 0.5156
89.4146 1.2703 1.2945 0.7463 0.4885

89.3764 1.2695 1.2942 0.7551 0.4919

88.8643 1.2668 1.2979 0.7869 0.4556
88.8643 1.2679 1.2983 0.7751 0.4514

87.8394 1.2644 1.3025 0.8185 0.4129

85.8030 1.2623 1.3090 0.8525 0.3558

85.8029 1.2616 1.3090 0.8600 0.3558
85.7507 1.2621 1.3090 0.8549 0.3561

83.7434 1.2603 I. 3 133 0.8855 0.3221

80.6858 1.2598 1.3192 0.9077 0.2771
78.6429 1,2596 1.3219 0.9210 0.2600

75.5850 1.2600 1.3266 0.9333 0.2274

73.5170 1.2601 1.3286 0.9433 0.2176
70.4982 1.2609 1.3327 0.9508 0.1909

68.6047 1.2613 1.3342 0.9565 0.1852

63.4007 1.2629 1.3392 0.9666 0.1602

60.3544 1.2639 1.3420 0.9716 0.1467

58.5837 1.2645 1.3434 0.9742 0.1411
52.7777 1.2666 1.3481 0.9811 O.1214

50.2475 1,2679 1.3504 0.9798 0.1101

47.8211 1.2687 1.3519 0.9833 0.1063
43.1878 1.2703 1.3549 0.9890 0.0975

40.1700 1.2719 1,3573 0.9865 0.0871

38.1572 1.2723 1.3581 0,9920 0.0882

34.1374 1.2742 1.3610 0.9908 0.0769

31.3217 1.2759 [.3632 0.9858 0.067 I
31.2997 1.2754 1.3630 0.9913 0.0692
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TABLE I. (Continued.)

2 phase

n , 4' 4'

Temperature lower phase upper phase lower phase upper phase

30.1209 1.2760 1.3636 0.9904 0.0684

25.1050 1.2779 1.3662 0.9935 0.0640

23.0860 1.2786 1.3674 0.9953 0.0605

20.0943 1.2803 1.3694 0.9907 0.0530

15.0876 1.2824 1.3720 0.9908 0.0478

10.0847 1.2842 1.3744 0.9937 0.0441

5.0845 1.2864 1.3771 0.9920 0.0369

0.0863 1.2883 1.3793 0.9931 0.0344

1 phase

91.9376 1.2804 0.6241

91.8366 1.2804 0.6246

91.7337 1.2806 0.6231

91.6312 1.2807 0.6226

91.5287 1.2808 0.6221

91.4262 1.2809 0.6216

91.3229 1.2809 0.6222

91.2342 1.2809 0.6227

91.1181 1.2811 0.6212

91.0159 1.2811 0.6218

90.9141 1.2812 0.6213

90.8120 1.2813 0.6208

90.7085 1.2814 0.6203

90.6055 1.2814 0.6209

90.5035 1.2815 0.6204

90.4004 1.2816 0.6199

90.2988 1.2817 0.6194

90.2471 1.2816 0.6208

90.1962 1.2815 0.6221

90.1444 1.2817 0.6203

90.0938 1.2816 0.6216

90.0936 1.2818 0.6195

90.0682 1.2818 0.6196

90.0429 1.2819 0.6187

90.0225 1.2817 0.6209

89.9965 1.2817 0.6211

89.9659 1.2821 0.6170

89.9298 1.2820 0.6183

89.9257 1.2816 0.6225

89.9145 1.2821 0.6173

89.9094 1.2817 0.6216

89.9041 1.2820 0.6184

89.9041 1.2817 0.6216

89.9031 1.2815 0.6237

89.9021 1.2815 0.6237

89.9011 1.2815 0.6238

separates and those phases asymptotically approach pure

components, and (2) the coexistence curve is still asymmet-

ric, which is common when the two components are very

dissimilar. 5 A skewed coexistence curve corresponds to a

nonlinear diameter.

IV. ANALYSIS AND DISCUSSION

The coexistence curve data presented above will be ana-

lyzed in four ways. First, the diameter of the volume fraction

coexistence curve will be analyzed to look for any anomaly.

Second, the shape of the coexistence curve will be studied

over different temperature regions to determine the asymp-
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FIG. 1. The refractive index coexistence curve of perfluoro-

methylcyclohexane-isopropy alcohol. The o's are the upper and lower phase

refractive index data for the critical composition mixture and the squares are

the one-phase data. The average of the upper and lower phase refractive

indices are indicated by x's and form the diameter of the curve. The long

straight lines on either side of the coexistence curve reflect the refractive

index behavior for the pure components. In the inset, our coexistence curve

data near the critical point are compared to the equation in Ref. 18, which

was a fitted to their refractive index data for this system.

totic exponent fl and the need for correction-to-scaling terms

and their amplitude values. Third, the issue of extended scal-

ing versus a crossover expression will be discussed and a

simple model will be developed. Fourth, different "compo-

sition" variables will be used to determine if the coexistence

curve can be symmetrized.

A. Diameter

The average of the upper (u) and lower (l) composition

values is referred to as the diameter of the coexistence curve.

The diameter 2-has a power-law dependence with exponent

O-,1, 2

80

G
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FIG. 2. The coexistence curve plotted with volume fraction as the com-

position variable. The symbols are the same as in Fig. 1 except the one-

phase points, which are indicated by a plus (+) sign. This composition

variable provides as symmetric a coexistence curve as any compositionlike
variable.
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FIG. 3. The diameter of the volume fraction coexistence curve, shown by
x's in Fig. 2, is plotted as a function of reduced temperature t = (T c - T)/T c .
The curve is the best fit from Table II.

x'--(x,+xt)/2=xc+at+At_(l+AltAt+...), (4)

where t is the reduced temperature, A is the amplitude of the

leading critical contribution, A I is the amplitude of the first

correction-to-scaling term, "a" is the amplitude of the lin-

ear, analytic temperature dependence, and A l is the universal

exponent (AI=0.5). An ideal, symmetric coexistence curve

would have a=0, and would have an exponent tr=l-a

=0.89 for the "proper" order parameter, while an "im-

proper" order parameter should have a tr=2fl=0.65

instead. 2 We analyzed the diameter of this coexistence curve

using volume fraction and found that the data close

(t<6x 10 -3) to the critical point are very symmetric (a _,0)

about the critical composition _bc = 0.6215 ---0.0015. A plot of

the diameter data and the best fit are shown in Fig. 3. It is

possible to fit the diameter over the entire temperature region

to an analytic, cubic function (see Table II). However, a 1 -or

term, with one correction-to-scaling term, significantly im-

proved the fit using fewer free parameters and without the

need of a linear term. A 2/_ term did not fit the data nearly as

well. The same result was found over a temperature region

closer to critical. The diameter data are consistent with a

cr=1-c_=0.89 dependence, which would indicate that the

volume fraction provides a symmetric coexistence curve

about the critical composition, and is a proper order param-

eter in this system.

B. Exponent/_ from volume fraction coexistence
curve

The shape of the coexistence curve is expected to be a

simple power law in reduced temperature as given by Eq. (1)

when the system is sufficiently close to the critical point, and

to include correction-to-scaling terms further from the criti-

cal point. We will discuss here our fits of Eqs. (1) and (2) to

our volume fraction data as given in Table I. Other compo-

sition variables will be discussed in a later section. The ques-

tion of how close one must be to apply Eqs. (1) and (2) will

be addressed in the next section in some detail. For now, we

TABLE II. The diameter _ of the volume fraction. Coexistence curve was

fitted by both an analytic (polynomial) function and by the predicted critical
point expressions that involve a noninteger power of t, the reduced tempera-
ture. The error in the diameter was taken to be 0.002. An asterisk marks the

best fit overall. Errors are one standard deviation; parameters were fixed if
no error is given.

_= dpc + at + bt 2+ ct 3 (analytic)

range cbc a b c _/N

t_<3.1Xl0 -2 0.6213 -1.101 0 0 1.20
___0.0003 _+0.045

t<0.26 0.6204 -0.887 1.94 0 2.78
_+0.0003 _+0.012 _+0.06

0.6212 - 1.127 5.01 -9.1 1.30

•+0.0003 _+0.027 _+0.32 -+0.9

_=_e+At_+Ait_+al, AI =0.5
range 0c A A t tr _3/N
t_<3.1 x 10-2 0.6222 -0.293 0 0.65 1.30

-+0.0003 _+0.012

0.6215 -0.731 0 0.89 1.11

+_.0.0003 -+0.030

t_<0.26 0.6228 -0.373 0.189 0.65 1.63
•+0.0003 _+0.009 _+0.020

• 0.6215 -0.863 0.994 0.89 !.15"

•+0.0003 _+0.016 ---0.036

0.6218 -0.713 0.74 0.83 1.10
•+0.0004 _+0.072 _+0.12 -+0.03

will restrict the range in reduced temperature t over which

we fit. Figure 4 gives a sense of the critical region where a

straight line can approximate the data. When we look very

close to the critical point ([t] <10-4), Eq. (1) fits the data

well with an exponent fl that is consistent with theoretical

predictions, but with amplitudes that are poorly determined

(see fit parameters in Table III). As the range is extended

(Itl <6× 10-3), the exponent tends to be larger which means

that the value of the correction-to-scaling term B a will be

positive when fl is fixed at its theoretical value of 0.327. The

best fit gives B=2.16___0.04 when fl is fixed at 0.327. Fol-

, , ,,,,J ....... d ....... ,I1- ....... ,I ....... J ........ I ,

°off
0

0

0

0

A_ o
o.1 {_

o.01 -_......_ ...... -1 ....... _ ....... _ ....... _ ...... -i .

10.6 i0 "s 10"4 i0 -3 i0 "z i0 -I
t

FIG. 4. A log-log plot of the difference in volume fraction between the
upper and lower phases as a function of the reduced temperature t. If simple

scaling holds, then the points should fall on a straight line of slope/3. The
effective slope asymptotically approaches zero at large t.
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TABLE ii1. Parameter values corresponding to the best fit of _b = _, + at -+ (B/2)t'_( 1 + Bit a_) to the volume fraction data in Table I. N is the number of
points and x21N is the chi square per point. The best fit is marked with an asterisk.

Fit Region N _,. a B B 1 fl A#/N

A ttl_< 10-4 52 0.6215 0 1.88 0 0.322 0.28

_+0.0007 -+0.58 -+0.009

B It] _<6× 10 -3 74 0.6210 0 2.206 0 0.327 1.01

-+0.0006 -+0.018

C 0.6215 - 1.11 2.206 0 0.327 0.96
-+0.0006 -+0.52 -+0.0t8

D 0.6215 - 1.11 3.56 -2.7 0.38 0.67
-+0.0006 ---0.52 -+0.38 -+0.9 -+0.01

E* 0.6215 - 1.11 2.160 0.51 0.327 0.94*

-+0.0006 -+0.52 -+0.036 -+0.34

lowing the suggestion of Singh and Pitzer, 7 we also tried a fit

over this region when B j=0 and B 2 was free, but the result-

ing fit was worse than the ones in Table III.

C. Crossover vs. correction to scaling

Correction-to-scaling terms allow the Ising critical re-

gion to be extended. However, at some point the system will

crossover to a mean-field critical point, as has been shown in

liquid-vapor systems, s This does not mean that the critical

exponent fl will crossover from Ising (0.327) to the near-

critical mean field value (0.5) because when the system is far

from the Ising critical point, then it is also far from the mean-

field critical point. Thus the description of the coexisting

phases for all temperatures becomes a much more difficult

problem; one which is only now being worked on. 9 How-

ever, we will develop here a simple method to approximately

determine the region in reduced temperature over which

correction-to-scaling should work.

As fluid mixtures phase separate, they will (a) eventually

separate into pure components, (b) approach another critical

point, and/or (c) undergo a first-order phase transition. Many

of the systems studied in the literature are like the one stud-

ied here: the phases asymptotically approach pure compo-

nents. This is clear in Fig. 2, but is also shown in Fig. 4 by

the slope of the curve asymptotically approaching zero. This

slope is the effective exponent fleff and can be calculated by 7

8 ln(x,-xt)

_/_eef = _ In(l) (5)

Near the critical point (t---_0), /3elf is the Ising exponent

fl=0.327. There have not been theoretical predictions as to

the functional form for fleff as t gets large, but we will show

that _¢ff approaches zero exponentially. Singh and Pitzer 7

numerically calculated fl_ff from the Ising model and com-

pared that prediction with a curve representing their fit using

Eq. (2) to the acetonitrile+cyclohexane data of Vani 25 and

also to perfluoroheptane+carbon tetrachloride data of

Jacobs. 26 The first two curves are reproduced in Fig. 5 on a

plot of fl_ff versus the quantity (1 -t). Singh and Pitzer con-

clude that coexistence curves for liquid-liquid mixtures near

an upper consolute point have B] =0 and B2<0, which gives

a linear shape in this plot. Moreover, they argue that these

amplitudes are consistent with correction-to-scaling ampli-

tudes found from susceptibility measurements and with the

shape determined by their analysis of the Ising model (see

Fig. 5). We have taken numerical derivatives of our coexist-

ence curve data for t>10 -2 and superimposed that data on

the curves of Singh and Pitzer. Indeed, a line can be drawn

corresponding to Bt =0 and B2=- 1.0 that is consistent with

much of our data. However, at temperatures further from

critical, fleff slowly approaches zero, which is quite unlike

these lines which will become negative in experimentally

accessible regions. It is inappropriate to use correction to

scaling, as in Eq. (2), to describe liquid-liquid coexistence

J .... i .... I .... I .... I .... i .... I

0.35 -

0.30-

0.25"

P_ 0.20-

0.15 - -J._

0100.05 -

0,00 -
i .... i .... 1 .... i .... i .... i .... i

0.70 o.8o 0.90 1.oo
(I -t)

FIG. 5. The effective slope of the data in Fig, 4 as a function of (l-t),

where t is the reduced temperature. Close to the critical point, fl_. has the

Ising exponent value 0.327-+0.002, but far from critical flcff approaches

zero. The line marked "Ising" is from Ref. 7. The squares are calculated

from the acetonitrile-cyclobexane data of Ref. 25, while the line through the

squares is the best fit reported in Ref. 7 when two correction-to-scaling

terms are used as described in the text, Our data are the circles, and the

lowest line is a line with two correction terms (B I =0 and B2=- 1.0) fol-

lowing Ref. 7. The triangles are calculated from the triethylamine-water

data of Ref. 27.
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i .... r .... i .... i .... L.,, I

l_,ff0.I s-

4-

0.01

0.00 0.05 0.10 0.15 0.20
t

FIG. 6. The effective slope ,Setr data shown in Fig. 5 are plotted semi-
logarithmically as a function of reduced temperature t. The data fall on the
straight lines shown with slope and intercept given in Table IV and indicate

consistency with an exponential approach to zero. The symbols are the same
as in Fig. 5.

curve data in a temperature region where fief f approaches

zero and where the system may have crossed over to mean-

field behavior.

Instead, we develop an empirical description of fleff

when far from critical. For purposes of comparison, we

chose two additional systems, triethylamine+water (T-W)

and acetonitrile+cyclohexane (A-C), for which we have

available, published coexisting phase data over a large region

of t. The A-C mole fraction data 25 in the region of interest,

t>l.4×10 -2, are analyzed to determine the numerical de-

rivative fleff, which is shown in Fig. 5. Although the T-W

system exhibits a lower consolute point, it has been well

studied and is a good comparative system because of the

strong hydrogen bonding and the resulting large value of B.

The published density data of Chaar 27 has been converted to

volume fraction in order to determine/_eff, which is shown in

Fig. 5. Numerical derivatives for all three systems were fitted

by a simple exponential approach of/3_ff to zero:

_eff = Be - h, (6)

where fl is the lsing exponent (0.327), h is a system-

dependent parameter, and t is the reduced temperature. The

results are shown in Fig. 6 and the parameter values are

given in Table IV, where it is shown empirically that

h_(O.6B)I/B/fl_O.64B 3°7 for these systems and will, we

TABLE IV. Parameter values when Eq. (6) is used to fit the numerical

derivative, fleff, in three systems: perfluoromethylcyclohexane-isopropyl al-
cohol (PFMC-IPA), triethylamine-water (T-W), and acetonitrile-

cyclohexane (A-C).

System ,8 k B (_.,8)#/B

PFMC-IPA 0.330-+0.005 5.8-+0.2 2.16-+0.04 a 0.57-+0.02

T-W 0.325-+0.009 42_+4 3.90-+0.03 h 0.60-+0.02
A-C 0.338-+0.005 4.3_+0.2 1.83c 0.62-+0.02

"From Table IlL

hOur reanalysis of the density measurements of Ref. 27 converted to volume
fraction.

CReference 25.

expect, hold for any liquid-liquid system. It is not surprising

that h is related to B, since the larger B is then the smaller t

will be when Ax approaches the limiting value of 1 (pure

components). The particular form for h(B) is suggested by

identifying a cutoff reduced temperature t c = B l/B, given by

simple scaling when Ax=l, with a characteristic reduced

temperature when htc= 1 in Eq. (6).

The implications of Eq. (6) for the coexistence curve are

easily determined. Very close to the critical point (t<l/h),

simple scaling results and Eq. (1) follows. Further from the

critical point

Ax = Btl_e- _'Bte_X2t2/4e-_X3t3/]8. • •

_-BtO(l-hilt+fl(l+2fl)h2, 2 .... ) (7)
4 '

where the expansion for small t resembles a Wegner expan-

sion, Eq. (2), with Al=0.5, Bl=0, and B 2 negative, consis-

tent with the observation of Singh and Pitzer. 7 Thus, the

observed values for B t and B 2 may reflect a crossover region

more than true Wegner values. The value of B2=-hfl that

one would calculate does not agree well with the fitted val-

ues reported for these systems even when B 1=0, because the

expansion in Eq. (7) converges slowly, and the fitted values

will also contain a contribution from the true Wegner terms.

The Wegner expansion also converges slowly and with

parameter values B i which are found experimentally to

change as different temperature regions are fitted. 25'28 One

would expect this when correction terms are no longer ad-

equate to describe the data, which we see as exhibiting cross-

over to a mean-field critical point. Thus, one needs to fit

to data fairly close to the critical point for the true Wegner

correction amplitudes to be determined and for one not to

see the apparent crossover represented by Eq. (7). It is also

possible to estimate the region where the data should be free

of crossover effects using Eq. (7): setting the second term

in the expansion to, say, 2% of the first, which gives

tmax_(0.1)B-3"°7_'0.009 for the PFMC-IPA system studied

here. Thus our fits in Table III of the volume fraction, coex-

istence curve used a temperature region t<0.006 to deter-

mine the amplitudes B and B I, and the exponent ft.

D. Symmetric coexistence curve

Finally, our coexistence curve data can be transformed

into other "composition" variables to see if the curve can be

made as symmetric as a simple Ising model. Japas and Levelt

Sengers 5 provide a nice definition of such a symmetric

curve: (I) simple scaling holds over the largest possible

range, (2) fl assumes the theoretical value of 0.327, (3) the

critical composition is 0.5, and (4) the diameter is a constant

except for the (l-a) anomaly. The critical exponent fl is

such a well-determined, universal quantity that it is now rea-

sonable to require that this exponent become close to its

theoretical value for any composition variable. Japas et al.

were unable to satisfy even three of these four conditions in

their study of the ionic system tetra pentylammonium bro-

mide in water. However, Sanchez 3 could achieve three of the

four conditions (critical composition was 0.3 instead of 0.5)
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TABLE V. Parameter values corresponding to the best fit of Eq. (9) used to symmetrize the coexistence curve.

R is defined in Eq. (8) and determines the "composition" variable; R = I is the original volume fraction. The
reduced temperature was Itl <6/10 -3 for all these fits.

Fit # _ a B /9 R x2/N

l 0.6210 0 2.206 0.327 1 1.01

--.0.0006 _+0.002

2 0.589 0 2.270 0.327 1.146 0.97
---0.015 "*'0.030 --+0.073

3 0.5 0 2.322 0.327 1.657 1.43
-+0.018 -+0.004

4 0.5 0 2.46 0.336 1.657 1.39
•+0.08 -+0.005 -+0.004

5 0.5 3.09 2.350 0.327 1.648 0.99

-+0.55 ---0.020 -+0.004

595

in symmetrizing the polymer solutions resulting from various
molecular weight polystyrene in methylcyclohexane. Damay

and Leclercq I1 had similar success in symmetrizing the

acetonitrile-cyclohexane data of Vani 25 when the critical

composition was 0.58.

The transformations to other compositionlike variables

all take advantage of the conversions among mole, mass, and

volume fractions which have the form:

4, ¢,
q'= 4,+R(1- 4,)' 4'= ¢,+(1- ¢)/R' (8)

where _b is the volume fraction and _p is another composition

variable. The value of R determines the composition vari-

able: R=I is volume fraction, R=p21pl=0.44 is mass frac-

tion, and R=(p21pl)(Mwl/Mw2)=2.56 is mole fraction.

None of these traditional choices give a completely symmet-

ric coexistence curve as defined above; however, R can be a

free parameter in fitting our coexistence curve data in an

attempt to symmetrize the curve. While this has been done

previously in various ways, 3'_Jl we choose the following al-

gorithm. A function that describes the upper (u,+) and lower

(l,-) branches of the coexistence curve in the variable _p is

Ou= d/c+ at + btl-"+-( B) t/Le D' t_+At,

_=Oe+at+--( B)t B, (9)

where the terms with D' and b are negligible close to the

critical point, and the ideal values of ¢c and a are 0.5 and 0,

respectively. The parameters ¢c, a, B, t, and R can be free

or fixed at selected values as this function is used to fit the

coexistence curve data by calculating a _b, and then using Eq.

(8) to calculate _b, which is compared to the experimental

data in Table I for t<6× 10 -3. The near critical coexistence

curve data are used to determine the best fit parameter val-

ues, which are reported in Table V, in order to assure that the

Ising critical point dominates.

A "composition" variable could not be found that pro-

vided a more symmetric coexistence curve than that obtained

with the volume fraction. Fit 1 in Table V is from Table III

when volume fraction (R = 1) is used and the diameter of the

J. Chem. Phys., Vol.

curve is a constant (a =0). The other fits allow certain pa-

rameters to vary while holding the rest fixed. Poor fits re-

suited when the critical composition @¢ was fixed at 0.5 un-

less the diameter could have a slope (a:_0). When the

diameter was a constant, the best fit was with R=1.146

__+0.073 and _,c=0.589___0.015, but this fit was only slightly

better than fit 1 with volume fraction. These two composition

2 ¸

t 3 ¸

4-

5 :

6x10-3 •

.I....I....h...l....I....h...I....|....I.

[] x/ cD

• i....l... 'l''''l''''l''''l''''l'''',''''l

-o2 -o.1 0.o o.1 02
(a) '_-vc

o.o 1
°.,°t g g

• c_ xv : c_
led xv :
1co xv : cc
._........,.........,..._...i.........,.......

-0.4 -O2 0.0 02 0.4
(b) V - _c

FIG. 7. Coexistence curve plots using either volume fraction (circles) or a

calculated composition variable _k(squares are using R = 1.146) from F_,q.
(8). The x's are the diameter of the volume fraction while the V are the

diameter for the _ variable: (a) shows the data close to the critical point,
where the fits by Eq. (9) are performed as reported in Table V, and (b)

shows the data over the entire range of reduced temperatures.
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TABLE VI. The diameter in the composition variable _ obtained when R= 1.146, which gave the most
symmetric coexistence curve in the region near critical (see Table V). The equations used to fit _, which is
calculated from _busing Eq. (8), are equivalent to those used in Table II. _is fit over the entire 10 6<t<0.26.

_= tb,,+ at + bt" + ct 3 (analytic)

_,. a b c x2/N

0.5893 -0.567

-+0.0003 -+0.012

0.5895 -0.645

-+0.0003 -+0.027

_=_pc + AtC"+ Alt'_÷a L Ai _-0.5

¢_ A

1.047 0 1.30

---0.059

2.04 - 2.94 I. 16
-+0.32 -+0.93

A ] o" x2/N

0.5904 - 0.2065 0 0.65 1.80
-+0.0003 -+0.0019

0.5903 -0.202 -0.010 0.65 1.83
-+0.0003 -+0.009 -+0.020

0.5897 -0.511 0.471 0.89 1.24"

-+0.0003 -+0.016 -+0.036

0.5895 -0.71 0.80 0.99 1.19
-+0.0003 -+0. l 1 -+0.19 -+0.05

variables are compared in Fig. 7, where the difference is

barely discernible close to critical where the fits were done,

and slightly different over the entire region where data were

taken. In Table VI, a series of fits of the diameter data in the

composition variable corresponding to R= 1.146 are done.

These fits can be compared with those given in Table II

when using volume fraction, which gave somewhat better fits

to the diameter data over the entire temperature region.

Moreover, there is not much statistical significance to the

difference between the volume fraction and the composition

variable with R= 1.146, since the error in R is just two stan-

dard deviations from the volume fraction (Re 1). We were

unable to find a composition variable that would fully sym-

metrize the coexistence curve using the criteria of Japas

et al.; however, the volume fraction produced a nearly sym-

metric coexistence curve about a critical composition

_bc=0.6210___0.0006.

V. CONCLUSION

Precise refractive index data on a critical mixture of per-

fluoromethylcyclohexane and isopropyi alcohol were com-

bined with equally precise refractive index and density mea-

surements on the pure fluids to allow the volume fraction to

be calculated from the Lorentz-Lorenz relation. The result-

ing coexistence curve was as symmetric about the critical

composition _bc=0.6215___0.0015 as any composition vari-

able that can be created using the standard transformation of

Eq. (8). The data near the critical point confirmed the theo-

retical value of the critical exponent ,8 and correction-to-

scaling terms could be applied appropriately. A crossover

region to a mean-field critical point is suspected and further

theoretical research needs to be done to confirm such a cross-

over. We show that the effective exponent ,seff approaches

zero asymptotically as an exponential, and note the difficul-

ties this creates when trying to interpret Wegner, correction-

to-scaling amplitudes that are determined by fitting experi-

mental data over a range in temperature that includes a

region where the phases are becoming pure components. By

finding an approximately universal approach to such a re-

gion, the value of h can be calculated from the amplitude B

and a region free of crossover can be estimated.
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